Stochastic Finite Elements by ROGER G. GHANEM


Authors
ROGER G. GHANEM
ISBN
9780486428185
Published
Binding
Paperback
Pages
224
Dimensions
137 x 214 x 14mm

Discrepancies frequently occur between a physical system's responses and predictions obtained from mathematical models. The Spectral Stochastic Finite Element Method (SSFEM) has proven successful at forecasting a variety of uncertainties in calculating system responses. This text analyses a class of discrete mathematical models of engineering systems, identifying key issues and reviewing relevant theoretical concepts, with particular attention to a spectral approach.Random system parameters are modeled as second-order stochastic processes, defined by their mean and covariance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is employed to represent these processes in terms of a countable set of uncorrected random variables, casting the problem in a finite dimensional setting. Various spectral approximations for the stochastic response of the system are obtained. Implementing the concept of generalized inverse leads to an explicit expression for the response process as a multivariate polynomial functional of a set of uncorrelated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral representation is identified in terms of polynomial chaos. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.
Back to School Book Frenzy 2025
28.04
RRP: $32.99
15% off RRP


This product is unable to be ordered online. Please check in-store availability.
Instore Price: $32.99
Enter your Postcode or Suburb to view availability and delivery times.


RRP refers to the Recommended Retail Price as set out by the original publisher at time of release.
The RRP set by overseas publishers may vary to those set by local publishers due to exchange rates and shipping costs.
Due to our competitive pricing, we may have not sold all products at their original RRP.